Natūralusis skaičius

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Jump to navigation Jump to search
 NoFonti.svg  Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius.
Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais.
Natūralieji skaičiai gali būti naudojami skaičiavimui (vienas obuolys, du obuoliai…)

Natūralusis skaičius (ankstesnėje literatūroje galima rasti terminą natūrinis skaičius) – aibės dydis. Čia turima omeny netuščią baigtinę aibę, kuri sutinkama natūralioje gamtoje. Natūralieji skaičiai simboliškai žymimi skaitmenimis, pavyzdžiui, romėniškais skaitmenimis (vienas – „I“, penki – „V“) arba arabiškais skaitmenimis (vienas – „1“, penki – „5“).

Natūraliųjų skaičių visuma, papildyta tuščios aibės dydžiu (nuliu), sudaro natūraliųjų skaičių aibę. Iš tiesų nėra visuotinio sutarimo dėl nulio įtraukimo į natūraliųjų skaičių aibę. Kartais sakoma, kad šią aibę sudaro tik teigiami skaičiai {1, 2, 3…}, kartais – kad neneigiami skaičiai {0, 1, 2, 3…}. Pirmasis apibrėžimas yra tradicinis, o antrasis atsirado tik XIX a. Lietuvos mokyklose mokoma pirmojo, tradicinio apibrėžimo.

Žymėjimas[redaguoti | redaguoti vikitekstą]

Natūraliųjų skaičių aibė matematikoje žymima raide N arba (Unikodu rodoma kaip ℕ). Tai yra skaiti begalinė aibė.

Tarp Lietuvos matematikų nėra nesutarimo dėl natūraliųjų skaičių aibės žymėjimo, nes beveik visi naudoja tokį (būtent šis žymėjimas naudojamas ir daugumoje užsienio matematikos knygų, bent jau anglų, rusų ir vokiečių kalbomis):

Tam, kad būtų išvengta nesusipratimų dėl nulio įtraukimo arba neįtraukimo į aibę, viršuje arba apačioje kartais parašomas indeksas:

Aritmetinės savybės[redaguoti | redaguoti vikitekstą]

Natūralieji skaičiai turi sudėties ir sandaugos kompozicijas[1], kurios pagal tam tikras taisykles kiekvienai aibės elementų porai priskiria trečią tos pačios aibės elementą:

  • sudėtis: a + b = c,
  • sandauga: a · b = c,

kur a, b ir c yra natūralieji skaičiai.

Sudėties (+) ir daugybos (·) veiksmai su natūraliaisiais skaičiais turi kelias aritmetinės savybes:

  • Uždarumas: jei a ir b yra natūralieji skaičiai, tai a + b ir a · b taip pat yra natūralieji skaičiai.
  • Asociatyvumas: jei a, b ir c yra natūralieji skaičiai, tai a + (b + c) = (a + b) + c ir a · (b · c) = (a · b) · c.
  • Komutatyvumas: jei a ir b yra natūralieji skaičiai, tai a + b = b + a ir a · b = b · a.
  • Neutraliojo elemento egzistavimas: jei a yra natūralusis skaičius, tai a + 0 = a ir a · 1 = a.
  • Daugybos skirstymas sudėties atžvilgiu: jei a ir b yra natūralieji skaičiai, tai a · (b + c) = (a · b) + (a · c).

Poaibiai[redaguoti | redaguoti vikitekstą]

Lyginiai skaičiai[redaguoti | redaguoti vikitekstą]

Lyginiai skaičiai yra tie natūralieji skaičiai, kurie gali būti išreikšti kaip dviejų natūraliųjų skaičių sandauga, kurioje vienas dauginamasis yra skaičius du:

a = 2 · b, kur a yra lyginis skaičius, b yra natūralusis skaičius.

Nelyginiai skaičiai[redaguoti | redaguoti vikitekstą]

Nelyginiai skaičiai yra tie natūralieji skaičiai, kurie negali būti išreikšti kaip dviejų natūraliųjų skaičių sandauga, kurioje vienas dauginamasis yra skaičius du.

Sudėtiniai skaičiai[redaguoti | redaguoti vikitekstą]

Sudėtiniai skaičiai yra tie natūralieji skaičiai, kurie gali būti išreikšti kaip natūraliųjų skaičių sandauga, kurioje visi dauginamieji yra mažesni už tą skaičių:

a = b · c · …, kur a yra sudėtinis skaičius, b ir c yra natūralieji skaičiai, visi mažesni už a.

Pirminiai skaičiai[redaguoti | redaguoti vikitekstą]

Pirminiai skaičiai yra tie natūralieji skaičiai, kurie negali būti išreikšti kaip natūraliųjų skaičių sandauga, kurioje visi dauginamieji yra mažesni už tą skaičių. Pirminiai skaičiai gali būti išreikšti tik viena sandauga:

a = 1 · a, kur a yra pirminis skaičius.

Sekos[redaguoti | redaguoti vikitekstą]

Fibonačio skaičių seka[redaguoti | redaguoti vikitekstą]

Fibonačio skaičiai yra natūraliųjų skaičių seka, kurioje kiekvienas sekos narys Fn+1 yra dviejų prieš jį einančių narių suma: Fn+1 = Fn + Fn-1. Du pirmieji sekos nariai yra F0 = 0 ir F1 = 1, taigi seka yra (0,1,1,2,3,5,8,…)

Pirminių skaičių seka[redaguoti | redaguoti vikitekstą]

Pirminiai skaičiai, surikiuoti pagal dydį, sudaro pirminių skaičių seką (2,3,5,7,11,13,17,…).

Taip pat skaitykite[redaguoti | redaguoti vikitekstą]

Vikiknygos

Išnašos[redaguoti | redaguoti vikitekstą]

  1. „Kompozicija“. Terminai.lt - tarptautinių žodžių žodynas. Nuoroda tikrinta 2020 gruodžio 20.