Matematinė struktūra

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigaciją, paiešką
Euklidas, graikų matematikas, sukūręs aksiomatinius geometrinių struktūrų pagrindus

Matematikoje struktūra dažniausiai susidaro iš aibių ir matematinių objektų, kurie tam tikru būdu prijungti prie šių aibių. Tai gali padėti vizualizuoti ir operuoti tais objektais, suteikiant jiems reikiamą prasmę. Matematinės struktūros gali būti: algebrinės struktūros, topologinės, metrinės struktūros (geometrijos) ir kitos.

Kartais su aibe gali būti susietos daugiau nei viena struktūros. Tai leidžia jas tyrinėti giliau. Pavyzdžiui, išrikiavimas (aibės elementų) gali indukuoti topologiją. Dar vienas pavyzdys - jei aibė turi topologiją ir tuo pat metu yra grupė, ši aibė tampa topologine grupe.

Matematikus ypač domina atvaizdžiai tarp aibių, kurie išsaugo aibių ir operacijų struktūras. Vienas iš pavyzdžių yra homomorfizmas, išsaugantis algebrines, homeomorfizmas, išsaugantis topologines, difeomorfizmas, išsaugojantis diferencijuojamų aibių struktūras.

Pavyzdžiai: realieji skaičiai[taisyti | redaguoti kodą]

Realiųjų skaičių aibėje galima apibrėžti įvairias struktūras: