Diferencialas
Diferencialas – funkcijos pokyčio tiesinė pagrindinė dalis. Funkcija y = f(x), apibrėžta intervale (a, b), vadinama diferencijuojama taške x (a, b), jei jos pokytį Δy = f(x + Δx) – f(x) galima išreikšti dviejų dėmenų suma: Δy = AΔx + o(Δx); čia A – skaičius, nepriklausantis nuo Δx.
Direfencialas žymimas: , iš to seka, kad funkcijos pokytis Δy mažai skiriasi nuo jos diferencialo:[1]
Pavyzdžiui, yra funkcija f(x)=x². Tos funkcijos išvestinė yra
Įstatykime vietoje x kokią nors reikšmę, pavyzdžiui, x=3.
- Δy = AΔx + o(Δx) = 2xΔx + (Δx)²=6Δx + (Δx)²,
čia A = 2x = 6 = f'(x); (Δx)² = o(Δx).
Taigi funkcijos pokytis yra Δy = f(x + Δx) – f(x) = AΔx + o(Δx), o diferencialas dy = AΔx = y'Δx = y’dx = f'(x)dx; Δx = dx.
Diferencijuojamumui būtina sąlyga yra funkcijos tolydumas. Tačiau ne visos tolydžios funkcijos yra diferencijuojamos. Kaip vienas iš tokių nediferencijuojamų funkcijų pavyzdžių yra Vejerštraso funkcija.
Taip pat skaitykite
[redaguoti | redaguoti vikitekstą]- Integralas
- Homogeninės diferencialinės lygtys
- Pirmos eilės tiesinės diferencialinės lygtys
- Bernulio diferencialinė lygtis
- Pilnųjų diferencialų integravimas
Šaltiniai
[redaguoti | redaguoti vikitekstą]- ↑ Autorių kolektyvas. Matematika. Vadovėlis XI klasei ir gimnazijų III klasei II dalis. – Kaunas: Šviesa, 2004. – 162 p. ISBN 5-430-03784-2