Natūralusis skaičius

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigaciją, paiešką
Natūralieji skaičiai gali būti naudojami skaičiavimui (vienas obuolys, du obuoliai...)

Matematikoje natūralieji skaičiai (ankstesnėje literatūroje galima rasti terminą natūriniai skaičiai) – tai tokie skaičiai, kuriais skaičiuojame daiktus.

Nėra visuotinio sutarimo dėl nulio įtraukimo į natūraliųjų skaičių aibę. Kartais sakoma, kad natūraliųjų skaičių aibę sudaro tik teigiami skaičiai {1, 2, 3...}, kartais – kad neneigiami skaičiai {0, 1, 2, 3...}. Pirmasis abibrėžimas yra tradicinis, o antrasis atsirado tik XIX a. Lietuvos mokyklose mokoma pirmojo, tradicinio apibrėžimo.

Žymėjimas[taisyti | redaguoti kodą]

Natūraliųjų skaičių aibė matematikoje žymima raide N arba \mathbb{N} (Unikodu rodoma kaip ℕ). Tai yra suskaičiuojama begalinė aibė.

Tam, kad būtų išvengta nesusipratimų dėl nulio įtraukimo arba neįtraukimo į aibę, aibė su nuliu žymima raide N ir nuliu (0) prirašytų apačioje arba viršuje, o aibė be nulio – su žvaigždute (*), prirašyta viršuje arba vienetu (1) prirašytu apačioje.

\mathbb{N}^0 = \mathbb{N}_0 = \{ 0, 1, 2, \ldots \}
\mathbb{N}^* = \mathbb{N}^+ = \mathbb{N}_1 = \mathbb{N}_{>0}= \{ 1, 2, \ldots \}.

Aritmetinės savybės[taisyti | redaguoti kodą]

Sudėties (+) ir daugybos (·) veiksmai su natūraliaisiais skaičiais turi kelias aritmetinės savybes:

  • Uždarumas: jei a ir b yra natūralieji skaičiai, tai a + b ir a · b taip pat yra natūralieji skaičiai.
  • Asociatyvumas: jei a, b ir c yra natūralieji skaičiai, tai a + (b + c) = (a + b) + c ir a · (b · c) = (a · b) · c.
  • Komutatyvumas: jei a ir b yra natūralieji skaičiai, tai a + b = b + a ir a · b = b · a.
  • Neutraliojo elemento egzistavimas: jei a yra natūralusis skaičius, tai a + 0 = a ir a · 1 = a.
  • Daugybos skirstymas sudėties atžvilgiu: jei a ir b yra natūralieji skaičiai, tai a · (b + c) = (a · b) + (a · c).

Taip pat skaitykite[taisyti | redaguoti kodą]