Kreivė

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigacija, paiešką
Parabolė – paprastos kreivės pavyzdys

Geometrijoje kreivė – vienmatis besitęsiantis objektas. Kreivių pavyzdžiai – apskritimas, tiesė, hiperbolė.

Apibrėžimas[redaguoti | redaguoti vikitekstą]

Tarkime, kad yra realiųjų skaičių intervalas, t. y. netuščias sujungtas poaibis. Tada kreivė yra nenutrūkstama projekcija , kur yra topologinė erdvė. Kreivė yra paprastoji, jei galioja sąlyga, jog su bet kokiom , reikšmėmis, .

Kreivė yra uždara arba ciklinė, jei ir . Taigi uždara kreivė yra nenutrūkstama apkritimo projekcija; paprastos uždaros kreivės vadinamos Žordano kreivėmis.

Plokštumos kreivė – kai X yra matematinė plokštuma ar, kai kuriais atvejais, projekcinė plokštuma. Erdvės kreivė – kai X yra trimatė erdvė, dažniausiai Euklido erdvė.

Etimologija[redaguoti | redaguoti vikitekstą]

Terminą „kreivė“ į lietuvių kalbos vartoseną įvedė kalbininkas Jonas Jablonskis.

Taip pat skaitykite[redaguoti | redaguoti vikitekstą]

Vikiteka