Trigonometrinių funkcijų integravimas

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Jump to navigation Jump to search
 NoFonti.svg  Šiam straipsniui ar jo daliai trūksta išnašų į šaltinius.
Jūs galite padėti Vikipedijai pridėdami tinkamas išnašas su šaltiniais.


 Crystal Clear app logout.png  Straipsnis turėtų prasidėti aiškiu apibrėžimu.
Jei galite, apibrėžkite straipsnio dalyką, pagrindinę sąvoką.

I. Integralai kur m, n - sveikieji skaičiai, suvedami į integralą su binominiu diferencialu ir integruojami tik 3 atvejais:

1)n nelyginis;
2)m nelyginis;
3)m+n lyginis.

Jei n nelyginis, taikome keitinį jei m nelyginis, taikome keitinį jei lyginis, keičiame

II.Integralai (be laipnsių) suvedami į racionaliųjų funkcijų integralus keitiniu Tada

Pavyzdžiai

  • Skaičiai m ir n lyginiai, lyginis, todėl taikome keitnį

kur

III. Integralams taikomi ketiniai arba

Pavyzdžiai

kur

kur


Taip pat skaitykite[redaguoti | redaguoti vikitekstą]