Grafas (matematika)
- Kitos reikšmės – grafas.
- Duomenų struktūra „grafas“ aprašyta straipsnyje grafas (duomenų struktūra)
Matematikoje, tiksliau grafų teorijoje, grafas – abstrakti struktūra aprašantį rinkinį objektų, kuriame kai kurios poros susietos ryšiais. Objektus abstrakčiai aprašantys elementai vadinami viršūnėmis (angl. vertex, dgs. vertices), kartais – mazgais (angl. node) arba taškais (angl. points). Susietos poros vadinamos briaunomis, kartais – ryšiais (angl. link) arba linijomis (angl. line). Plokštumoje grafo viršūnės dažnai vaizduojamos taškais ar kitais paprastomis geometrinėmis figūromis, o briaunos – kreivėmis arba atkarpomis, jungiančiomis tuos taškus. Briaunos gali būti neorientuotos arba orientuotos (pastaruoju atveju jos dažnai vaizduojamos rodyklėmis).
Neorientuoto grafo pavyzdžiu gali būti grupė žmonių, kurioje briauna sujungiame kiekvieną porą žmonių pažįstančių vienas kitą. Kadangi pažintis yra simetriškas sąryšis (žmogus A pažįsta žmogų B tada ir tik tada, kai žmogus B pažįsta žmogų A), šis grafas yra neorientuotas. Kita vertus, jei briaunomis laikytume sutvarkytas poras (A,B), kur žmogus A yra skolingas žmogui B, gautume orientuotą grafą, kadangi iš to, kad A skolingas žmogui B, neišplaukia, jog B skolingas žmogui A.
Grafų apibrėžimai
[redaguoti | redaguoti vikitekstą]Abstrakčiai grafas apibrėžiamas kaip pora , kur – kokia nors aibė, o – aibės elementų porų aibė. Aibės elementai vadinami grafo G viršūnėmis, o aibės E elementai – briaunomis.
Dažnai naudinga briaunoms priskirti kryptis, t. y., briauną pakeisti sutvarkyta pora , kurią vadiname lanku (angl. arc).[1] Šiuo atveju gauname struktūrą vadinamą orientuotuoju grafu arba digrafu.
Grafo sąvoką galima apibendrinti leidžiant kartotines briaunas. Multigrafu vadinama pora , kur yra elementų porų multiaibė. Analogiškai yra multidigrafas, jei yra sutvarkytų porų iš multiaibė.
Galiausiai, kai kada patogu leisti briaunas ar lankus kurie jungia viršūnę su pačia savimi. Formaliai, šiuo atveju leidžiama briaunas pavidalo ir lankus pavidalo . Tokias briaunas ir lankus vadiname kilpomis, o (di)grafus, kuriuose leidžiamos kilpos vadiname (di)grafais su kilpomis (angl. looped (di)graph, (di)graph with loops).
Svoriniu grafu vadinamas toks grafas, kurio kiekvienai briaunai priskirta kažkokia skaitinė reikšmė (svoris).
Terminai
[redaguoti | redaguoti vikitekstą]Dvi grafo viršūnės vadinamos gretimomis (angl. adjacent), kai jas jungia briauna. Turėdami briauną , sakome, kad viršūnės ir incidenčios (angl. incident) briaunai .
(Multi)grafo viršūnės laipsnis (angl. degree), žymimas , yra briaunų, incidenčių viršūnei , skaičius. Digrafe išėjimo laipsniu (angl. out-degree) vadinamas skaičius lankų vedančių iš (t. y., ); analogiškai įėjimo laipsniu (angl. in-degree) vadinamas skaičius lankų vedančių į (t. y., ). Grafas vadinamas reguliariuoju (angl. regular), jei jo visų viršūnių laipsniai yra lygūs.
Keliu (angl. walk) (multi)grafe vadinama seka , kurioje yra viršūnės, o yra briaunos, kur briauna jungia viršūnes ir (jei digrafe reikalaujame, kad yra lankas iš į , tokį kelią vadiname orientuotuoju keliu, angl. oriented walk). Jei grafe nėra kartotinių briaunų, kiekvieną kelią vienareikšmiškai apibrėžia viršūnių seka . Kelias, kuriame nesikartoja briaunos, vadinamas grandine (angl. trail). Grandinė, kurioje nesikartoja viršūnės, vadinama taku (angl. path).
Grafas vadinamas grafo pografiu (angl. subgraph), jei ir . Pografį vadiname indukuotuoju, (angl. induced) jei į įeina visos grafo briaunos jungiančios aibės elementus. Kadangi kiekvieną indukuotą pografį vienareikšmiškai apibrėžia jo viršūnių aibė , todėl indukuotą pografis su viršūnių aibe žymime .
Neorientuotas grafas yra jungus (angl. connected), jei kiekvieną porą skirtingų viršūnių jungia kelias (pastebėkime, kad grafas su viena viršūne taip pat yra jungus). Bet kurio grafo viršūnių aibę galima vieninteliu būdu išskaidyti į netuščias aibes taip, kad pografiai būtų jungūs. Šie pografiai vadinami grafo jungiosiomis komponentėmis.
Jei digrafe kiekvienai skirtingų viršūnių porai egzistuoja orientuotas kelias iš į , toks digrafas vadinamas stipriai jungiuoju (angl. strongly connected).
Viršūnių aibė vadinama nepriklausoma (angl. independent) arba stabilia (angl. stable), jei tarp viršūnių nėra briaunų (t. y. briaunų skaičius lygus ). Neorientuotasis grafas vadinamas dvidaliu (angl. bipartite), jei jo viršūnių aibę galima išskaidyti į dvi nepriklausomas aibes , . Bendriau, kiekvienam grafas vadinamas -daliu (angl. -partite), jei jei jo viršūnių aibę galima išskaidyti į nepriklausomas aibes .
Šaltiniai
[redaguoti | redaguoti vikitekstą]- ↑ grafas. Visuotinė lietuvių enciklopedija (tikrinta 2024-02-03).