Lagero polinomas

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigacija, paiešką
Pirmi šeši Lagero polinomai.

Lagero polinomas (arba Lagero polinomai), pavadintas matematiko Edmondo Lagero (Edmond Laguerre) garbei, yra kanoninis antros eilės tiesinės diferencialinės Lagero lygties:

sprendinys.

Ši lygtis turi nesinguliarius sprendinius tik tuomet, kai parametras n yra teigiamas arba lygus nuliui sveikas skaičius.

Šie polinomai dažniausiai yra žymimi bei sudaro polinomų seka, kurios narius galime apibrėžti kaip

Jie priklauso ortogonalių polinomų šeimai, jų vidinė (skaliarinė) sandauga yra apibrėžiama

Lagero polinomai yra svarbūs kvantinėje mechanikoje, kur jie aprašo radialinę Šredingerio lygties sprendinio vienaelektroniam atomui dalį.

Fizikoje Lagero polinomai yra normuojami kitaip negu matematikoje, todėl jie skiriasi nuo apibrėžtų čia per daugiklį (n faktorialas).

Keli pirmi polinomai[redaguoti | redaguoti vikitekstą]

Žemiau pateiktos kelių pirmų Lagero polinomų matematinės išraiškos:

n
0
1
2
3
4
5
6

Taip pat skaitykite[redaguoti | redaguoti vikitekstą]