Grupė (algebra)

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigaciją, paiešką

Grupės – paprasčiausia algebrinė struktūra, aibė, apibrėžiama vienintele binarine operacija (vidinės kompozicijos dėsniu), tenkinančia tam tikras aksiomas. Grupes ir jų savybes nagrinėja algebros mokslo šaka grupių teorija.

Grupės apibrėžimą tenkina dauguma nagrinėtų matematinių struktūrų. Pavyzdžiui, grupės sudėties atžvilgiu yra sveikųjų, racionaliųjų, realiųjų ir kompleksinių skaičių aibės, grupės daugybos atžvilgiu yra racionalieji skaičiai (be 0), realieji ir kompleksiniai skaičiai.

Grupės plačiai naudojamos matematikoje, kituose tiksliuosiuose moksluose, inžinerijoje. Pavyzdžiui, grupės naudojamos tiriant reliatyvumą, kvantinę mechaniką, dalelių fiziką, taip pat grupėmis išreikštos geometrinės transformacijos naudojamos chemijoje, kompiuterinėje grafikoje.

Savybės[taisyti | redaguoti kodą]

Elementų aibė G vadinama grupe jai apibrėžto aibės elementų kompozicijos dėsnio * atžvilgiu, jei tenkina šias savybes:

Uždarumas
Bet kokiems a, b G grupės elementams, kompozicijos * rezultatas a * b irgi priklauso tai grupei G.
Asociatyvumas
Dėsnis * yra asociatyvus, t. y. (g_1 * g_2) * g_3 = g_1 * (g_2 * g_3), bet kokiems grupės G elementams g_1, g_2, g_3
Vienetinis elementas
Egzistuoja neutralus elementas e (dar vadinamas grupės vienetu), su kuriuo teisinga lygybė e * g = g * e = g
Atvirkštinis elementas
Kiekvienam elementui egzistuoja simetrinis elementas kompozicijos dėsnio atžvilgiu (dar vadinamas atvirkštiniu elementu), t. y. g * g^{-1} = g^{-1} * g = e (g – bet kuris grupės elementas, g^{-1} – simetrinis elementas iš tos pačios grupės.

Abelio grupė[taisyti | redaguoti kodą]

Jeigu kompozicijos dėsnis * yra komutatyvus, t. y. bet kokiems dviem grupės elementams a,b galioja sąryšis a*b=b*a, tokia algebrinė struktūra vadinama Abelio grupe.

Pogrupiai[taisyti | redaguoti kodą]

Grupės pogrupiu vadinami tokie grupės G poaibiai H, kurie tenkina savybes:

  • bet kurių dviejų poaibio H elementų sandauga priklauso H;
  • kiekvienam poaibio H elementui atvirkštinis elementas priklauso H.

Kiekvienas šias savybes tenkinantis pogrupis taip pat yra grupė.

Pavyzdžiui, racionalių skaičių aibė yra grupė sudėties atžvilgiu, o sveikųjų skaičių aibė yra šios grupės pogrupis.