Groverio algoritmas

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.
Peršokti į: navigaciją, paiešką

Groverio algoritmas (angl. Grover's algorithm) yra kvantinis algoritmas skirtas ieškojimui nestrukturizuotoje (nesutvarkytoje) duomenų bazėje su N kintamųjų per O( \sqrt{N}) laiką ir užimantis O(\log_2 N)=O(n) saugojimo vietos. Algoritmas buvo sugalvotas L. Groverio (Lov Grover) 1996 m.

Klasiškai, ieškant nesutvarkytoje duomenų bazėje reikia linijinio ieškojimo per O(N/2) laiką. Groverio algoritmas kuris užima O(N1/2) laiko, yra greičiausias įmanomas algoritmas skirtas ieškojimui nesutvarkytoje duomenų bazėje. Jis suteikia tik kvadratinį pagreitėjimą, skirtingai nuo kitų kvantinių algoritmų, kurie gali suteikti eksponentinį paspartėjimą, nei jų klasikiniai atitikmenys. Tikimybė, kad atsakymas bus klaidingas yra 1/N, kur N yra duomenų bazę sudarančių elementų sveikas skaičius. N=2n, kur n kubitų skaičius.

Groverio Iteracija[taisyti | redaguoti kodą]

|O\rangle=|0\rangle |0\rangle  ...   |0\rangle=|00...0\rangle.
|\psi\rangle= H|0\rangle H|0\rangle  H|0\rangle H|0\rangle ...  H|0\rangle H|0\rangle=H^n|O\rang.

Vartai M, kurie naudojami po Hadamardo vartų:

M=1-2| t\rangle \langle t|;
M|\psi\rangle=(1-2| t\rang \lang t|)|\psi\rangle=|\psi\rangle-\frac{2}{\sqrt{2^n}}| t\rangle=|\psi\rangle-\frac{2}{\sqrt{N}}| t\rangle,
\langle t|\psi\rangle=\frac{1}{\sqrt{2^n}}

kur t yra ieškomas elementas, o n yra kubitų skaičius.

Per vartus B pereina visi kubitai išskyrus paskutinį.

B= 2|\psi\rang \lang\psi|-1,
B(|\psi\rang-\frac{2}{\sqrt{N}}|t\rang) = (2|\psi\rang \lang\psi|-1)(|\psi\rang-\frac{2}{\sqrt{N}}|t\rang)=2 |\psi\rang \lang \psi|\psi\rang-|\psi\rang-\frac{4}{\sqrt{N}} |\psi\rang \langle \psi|t\rang+\frac{2}{\sqrt{N}}|t\rang=.
=2|\psi\rang-|\psi\rang-\frac{4}{\sqrt{N}}\cdot\frac{1}{\sqrt{N}}|\psi\rang+\frac{2}{\sqrt{N}}|t\rang=|\psi\rang-\frac{4}{N}|\psi\rang+\frac{2}{\sqrt{N}}|t\rang=\frac{N-4}{N}|\psi\rang+\frac{2}{\sqrt{N}}|t\rang,

kur \langle\psi|\psi\rangle=1,

\langle\psi|t\rangle=\frac{1}{\sqrt{2^n}}.

Pavyzdžiui, t=|1001>:

\langle 1001|\psi\rangle=\frac{1}{\sqrt{2^4}}.
\langle t|t\rangle=\langle 1001|1001\rangle=1.
\langle t|x\rangle=\langle 1001|1000\rangle=0.
B= H(2|O\rangle \langle O|-1)H=(2H|O\rangle \langle O|-H)H=2H|O\rangle \langle O|H-HH=2|\psi\rangle \langle \psi|-1.

Groverio iteracija G:

G=BM=(2|\psi\rangle \langle\psi|-1)(1-2| t\rangle \langle t|).

Operatorius M ir B reikia kartoti tiek kartų kiek reikia Groverio iteracijų, kol bus gautas teisingas atsakymas.

HH=1; MM=1; BB=1;
 (2|O\rangle \langle O|-1)(2|O\rangle \langle O|-1)=4|O\rangle \langle O|O\rangle \langle O|-2|O\rangle \langle O|-2|O\rangle \langle O|+1=4|O\rangle  \langle O|-4|O\rangle  \langle O|+1=1.

Groverio Iteracija su 5 kubitais (N=16)[taisyti | redaguoti kodą]

Tarkime turime ant įėjimo 5 kubitus. Pirmi 4 kubitai yra 0 būsenoje, o penktas kubitas yra 1 busenoje. Pirmi keturi kubitai yra skaičius n, kuris praėjes pro H tampa 2n. Visus 5 kubitus praleidžiame pro Hadamardo vartus.

t=1, |\psi\rangle H|1\rangle=H|0\rangle H|0\rangle H|0\rangle H|0\rangle H|1\rangle =\frac{1}{4}(|0\rangle+|1\rangle) (|0\rangle+|1\rangle)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=
=\frac{1}{4}(|0000\rangle+|0010\rangle+|0001\rangle+|0011\rangle+
|1000\rangle+|1010\rangle+|1001\rangle+|1011\rangle+

+|0100\rangle+|0110\rangle+|0101\rangle+|0111\rangle+
|1100\rangle+|1110\rangle+|1101\rangle+|1111\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|\psi\rangle  \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle). Orakulas M:

M=1-2| t\rangle \langle t|=1-2| 1001\rangle \langle 1001|.
M|\psi\rangle=|\psi\rangle-\frac{2}{\sqrt{2^n}}| t\rangle=|\psi\rangle-\frac{2}{\sqrt{2^4}}|1001\rangle,

kur t yra ieškoma būsena. Tarkime, mes ieškome |1001> busenos. Tada perėjus per orakulą M |1001> busena bus pažymėta ženklu minus, jos amplitudė pasidarys neigiama:

t=2,

M|\psi\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=(1-2| 1001\rangle \langle 1001|)|\psi\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=(|\psi\rangle-2| 1001\rangle \langle 1001|\psi\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=

=(|\psi\rangle -\frac{2}{\sqrt{2^4}}|1001\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=(|\psi\rangle-\frac{1}{2}|1001\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=
=(\frac{1}{4}(|0000\rangle+|0010\rangle+|0001\rangle+|0011\rangle+
|1000\rangle+|1010\rangle+|1001\rangle+|1011\rangle+
+|0100\rangle+|0110\rangle+|0101\rangle+|0111\rangle+
|1100\rangle+|1110\rangle+|1101\rangle+|1111\rangle))-\frac{1}{2}|1001\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=
=\frac{1}{4}(|0000\rangle+|0010\rangle+|0001\rangle+|0011\rangle+
|1000\rangle+|1010\rangle-|1001\rangle+|1011\rangle+
+|0100\rangle+|0110\rangle+|0101\rangle+|0111\rangle+
|1100\rangle+|1110\rangle+|1101\rangle+|1111\rangle) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle).

Toliau Praleidžiame tik pirmus 4 kubitus pro B vartus:

t=3,  B(|\psi\rangle-\frac{1}{2}|1001\rangle)=(2|\psi\rangle \langle\psi|-1)(|\psi\rangle-\frac{1}{2}|1001\rangle)=2|\psi\rangle \langle\psi|\psi\rangle-|\psi\rangle-\frac{2}{2}|\psi\rangle \langle\psi|1001\rangle+\frac{1}{2}|1001\rangle=
=2|\psi\rangle -|\psi\rangle- |\psi\rangle \frac{1}{\sqrt{2^4}} +\frac{1}{2}|1001\rangle=
|\psi\rangle - \frac{1}{4}|\psi\rangle + \frac{1}{2} |1001\rangle=\frac{3}{4}|\psi\rangle + \frac{1}{2} |1001\rangle=
=\frac{1}{16}(3|0000\rangle+3|0010\rangle+3|0001\rangle+3|0011\rangle+
3|1000\rangle+3|1010\rangle+3|1001\rangle+3|1011\rangle+
+3|0100\rangle+3|0110\rangle+3|0101\rangle+3|0111\rangle+
3|1100\rangle+3|1110\rangle+3|1101\rangle+3|1111\rangle)+\frac{1}{2} |1001\rangle=
=\frac{1}{16}(3|0000\rangle+3|0010\rangle+3|0001\rangle+3|0011\rangle+
3|1000\rangle+3|1010\rangle+11|1001\rangle+3|1011\rangle+
+3|0100\rangle+3|0110\rangle+3|0101\rangle+3|0111\rangle+
3|1100\rangle+3|1110\rangle+3|1101\rangle+3|1111\rangle).

Kaip matome po perėjimo per B vartus, ieškomo elemento amplitudė pakilo ir sudaro \frac{11}{16}, kai tuo tarpu visų kitų elementų amplitudės yra \frac{3}{16}.

15(\frac{3}{16})^2+(\frac{11}{16})^2=1.

Tai reiškia, kad tikimybė išmatuoti |1001> yra (11/16)²=0.47265625 arba ~47 %.

Toliau vėl praleidžiame visus 5 kubitus pro orakulą M (penktas kubitas neparodytas, nes skaičiavimuose jis nieko nekeičia):

t=4, M(\frac{3}{4}|\psi\rangle + \frac{1}{2} |1001\rangle)=(1-2| 1001\rangle \langle 1001|)(\frac{3}{4}|\psi\rangle + \frac{1}{2} |1001\rangle)=
=\frac{3}{4}|\psi\rangle-\frac{6}{4}| 1001\rangle \langle 1001|\psi\rangle+ \frac{1}{2} |1001\rangle -\frac{2}{2}| 1001\rangle \langle 1001|1001\rangle=
=\frac{3}{4}|\psi\rangle-\frac{3}{2}| 1001\rangle \frac{1}{\sqrt{2^4}}+ \frac{1}{2} |1001\rangle -| 1001\rangle =\frac{3}{4}|\psi\rangle-\frac{3}{2}| 1001\rangle \frac{1}{4} - \frac{1}{2} | 1001\rangle=
=\frac{3}{4}|\psi\rangle - \frac{3}{8}| 1001\rangle -\frac{1}{2}| 1001\rangle=\frac{3}{4}|\psi\rangle-\frac{7}{8}| 1001\rangle=
=\frac{1}{16}(3|0000\rangle+3|0010\rangle+3|0001\rangle+3|0011\rangle+
3|1000\rangle+3|1010\rangle-11|1001\rangle+3|1011\rangle+
+3|0100\rangle+3|0110\rangle+3|0101\rangle+3|0111\rangle+
3|1100\rangle+3|1110\rangle+3|1101\rangle+3|1111\rangle).
15(\frac{3}{4} \frac{1}{4})^2+(\frac{3}{16}-\frac{7}{8})^2=1.

Toliau pirmus 4 kubitus praleidžiame pro B vartus:

t=5,

B(\frac{3}{4}|\psi\rangle-\frac{7}{8}| 1001\rangle)=(2|\psi\rangle \langle\psi|-1)(\frac{3}{4}|\psi\rangle-\frac{7}{8}| 1001\rangle)=\frac{3}{2}|\psi\rangle \langle \psi|\psi \rangle-\frac{3}{4}|\psi \rangle-\frac{7}{4}|\psi\rangle \langle \psi| 1001\rangle+ \frac{7}{8}| 1001\rangle=

=\frac{3}{2}|\psi\rangle -\frac{3}{4}|\psi\rangle-\frac{7}{4}|\psi\rangle \frac{1}{\sqrt{2^4}}+ \frac{7}{8}| 1001\rangle=\frac{3}{4}|\psi\rangle -\frac{7}{4}|\psi\rangle \frac{1}{4}+ \frac{7}{8}| 1001\rangle =\frac{3}{4}|\psi\rangle -\frac{7}{16}|\psi\rangle+ \frac{7}{8}| 1001\rangle=
=\frac{5}{16}|\psi\rangle+ \frac{7}{8}| 1001\rangle

Tikimybė dabar išmatuoti |1001> yra  (\frac{5}{16} \cdot \frac{1}{4}+ \frac{7}{8})^2 =(\frac{5}{64} +\frac{7}{8})^2=(\frac{5+7 \cdot 8}{64})^2=(\frac{61}{64})^2\approx 0.91 arba ~91 %.

 15(\frac{5}{16} \cdot \frac{1}{4})^2+ (\frac{61}{64})^2 =1.

Kadangi n=4, o N=2n=24=16, tai pagal idėja reikia padaryti \sqrt{16}=4 Groverio Iteracijas G. O dabar kol kas padarytos tik dvi groverio iteracijos. Taigi, toliau praleidžiame visus kubitus pro M vartus:

t=6, M(\frac{5}{16}|\psi\rangle+ \frac{7}{8}| 1001\rangle)=(1-2| 1001\rangle \langle 1001|)(\frac{5}{16}|\psi\rangle+ \frac{7}{8}| 1001\rangle)=
=\frac{5}{16}|\psi\rangle-\frac{5}{8}| 1001\rangle \langle 1001|\psi\rangle+ \frac{7}{8}| 1001\rangle-\frac{7}{4}| 1001\rangle \langle 1001| 1001\rangle=
=\frac{5}{16}|\psi\rangle-\frac{5}{8}| 1001\rangle\frac{1}{4}+ \frac{7}{8}| 1001\rangle-\frac{7}{4}| 1001\rangle=\frac{5}{16}|\psi\rangle-\frac{5}{32}| 1001\rangle- \frac{7}{8}| 1001\rangle=
=\frac{5}{16}|\psi\rangle+\frac{-5-7 \cdot 4}{32}| 1001\rangle=\frac{5}{16}|\psi\rangle-\frac{33}{32}| 1001\rangle.

Toliau praleidžiame pirmus keturis kubitus pro B vartus:

t=7,  B(\frac{5}{16}|\psi\rangle-\frac{33}{32}| 1001\rangle)=(2|\psi\rangle \langle\psi|-1)(\frac{5}{16}|\psi\rangle-\frac{33}{32}| 1001\rangle)=
=\frac{5}{8}|\psi\rangle \langle\psi|\psi\rangle-\frac{5}{16}|\psi\rangle-\frac{33}{16}|\psi\rangle \langle\psi| 1001\rangle+\frac{33}{32}| 1001\rangle=\frac{5}{8}|\psi\rangle-\frac{5}{16}|\psi\rangle-\frac{33}{16}|\psi\rangle\frac{1}{4}+\frac{33}{32}| 1001\rangle=
=\frac{5}{16}|\psi\rangle-\frac{33}{64}|\psi\rangle+\frac{33}{32}| 1001\rangle=\frac{5\cdot 4 -33}{64}|\psi\rangle+\frac{33}{32}| 1001\rangle=-\frac{13}{64}|\psi\rangle+\frac{33}{32}| 1001\rangle.

Tikimybė išmatuoti |1001> yra (-\frac{13}{64} \cdot \frac{1}{4}+\frac{33}{32})^2=(-\frac{13}{256}+\frac{33}{32})^2=(\frac{-13+ 33 \cdot 8}{256})^2=(\frac{251}{256})^2=\frac{63001}{65536}\approx 0.961 arba ~96.1 %.

Toliau praleidžiame visus kubitus pro M vartus:

t=8, M(-\frac{13}{64}|\psi\rangle+\frac{33}{32}| 1001\rangle)=(1-2| 1001\rangle \langle 1001|)(-\frac{13}{64}|\psi\rangle+\frac{33}{32}| 1001\rangle)=
=-\frac{13}{64}|\psi\rangle+\frac{13}{32}| 1001\rangle \langle 1001|\psi\rangle+ \frac{33}{32}| 1001\rangle-\frac{33}{16}| 1001\rangle \langle 1001| 1001\rangle=
=-\frac{13}{64}|\psi\rangle+\frac{13}{32}| 1001\rangle\frac{1}{4}+ \frac{33}{32}| 1001\rangle-\frac{33}{16}| 1001\rangle=-\frac{13}{64}|\psi\rangle+\frac{13}{128}| 1001\rangle- \frac{33}{32}| 1001\rangle=
=-\frac{13}{64}|\psi\rangle+\frac{13-33 \cdot 4}{128}| 1001\rangle=-\frac{13}{64}|\psi\rangle- \frac{119}{128}| 1001\rangle.

Toliau praleidžiame pirmus keturis kubitus pro B vartus:

t=9,  B(-\frac{13}{64}|\psi\rangle- \frac{119}{128}| 1001\rangle)=(2|\psi\rangle \langle\psi|-1)(-\frac{13}{64}|\psi\rangle- \frac{119}{128}| 1001\rangle)=

=-\frac{13}{32}|\psi\rangle \langle\psi|\psi\rangle+\frac{13}{64}|\psi\rangle-\frac{119}{64}|\psi\rangle \langle\psi| 1001\rangle+\frac{119}{128}| 1001\rangle=-\frac{13}{32}|\psi\rangle+\frac{13}{64}|\psi\rangle-\frac{119}{64}|\psi\rangle\frac{1}{4}+\frac{119}{128}| 1001\rangle=

=-\frac{13}{64}|\psi\rangle-\frac{119}{256}|\psi\rangle+\frac{119}{128}| 1001\rangle=\frac{-13\cdot 4 -119}{256}|\psi\rangle+\frac{119}{128}| 1001\rangle=-\frac{171}{256}|\psi\rangle+\frac{119}{128}| 1001\rangle.

Tikimybė išmatuoti |1001> yra (-\frac{171}{256} \cdot \frac{1}{4}+\frac{119}{128})^2=(-\frac{171}{1024}+\frac{119}{128})^2=(\frac{-171+ 119 \cdot 8}{1024})^2=(\frac{781}{1024})^2=\frac{609961}{1048576}\approx 0.582 arba ~58.2 %. Kaip matome po ketvirtos groverio iteracijos G=MB, ieškomo elemento (|1001>) aplitudė sumažėjo. Išvada, kad groverio iteracijas reikia nustoti daryti kada visos elementų amplitudės pasidaro neigiamos (-). Na ir bendra amplitude kaip visada lygi 1: 15(\frac{-171}{1024})^2+(\frac{781}{1024})^2=1.

Groverio algoritmas kai N=8[taisyti | redaguoti kodą]

Turime 4 kubitus, tris pirmi kubitai yra nuliai, o ketvirtas vienetas. Praleidžiame juos visus pro Hadamardo vartus:

t=1, |\psi\rangle H|1\rangle= H|0\rangle H|0\rangle H|0\rangle H|1\rangle =\frac{1}{\sqrt{2^3}}(|0\rangle+|1\rangle) (|0\rangle+|1\rangle)(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=
=\frac{1}{2\sqrt{2}}(|000\rangle+|001\rangle+|011\rangle+|111\rangle+
|100\rangle+|110\rangle+|101\rangle+|010\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle).

Toliau visus 4 kubitus praleidžiame pro M vartus. Ketvirto kubito nerašome nes jis lieka nepakitęs. Tarkime mes ieškome |110>.

t=2,

M|\psi\rangle=M\frac{1}{2\sqrt{2}}(|000\rangle+|001\rangle+|011\rangle+|111\rangle+
|100\rangle+|110\rangle+|101\rangle+|010\rangle)=(1-2| 110\rangle \langle 110|)|\psi\rangle=

=|\psi\rangle-2| 110\rangle \langle 110|\psi\rangle=|\psi\rangle-2| 110\rangle \frac{1}{\sqrt{2^3}}=|\psi\rangle-2| 110\rangle \frac{1}{2\sqrt{2}}=|\psi\rangle-\frac{1}{\sqrt{2}}| 110\rangle =
=\frac{1}{2\sqrt{2}}(|000\rangle+|001\rangle+|011\rangle+|111\rangle+
|100\rangle-|110\rangle+|101\rangle+|010\rangle).

Toliau praleidžiame tik pirmus 3 kubitus pro B vartus:

t=3, B(|\psi\rangle-\frac{1}{\sqrt{2}}| 110\rangle)=(2|\psi\rangle \langle\psi|-1)(|\psi\rangle-\frac{1}{\sqrt{2}}| 110\rangle)=
=2|\psi\rangle \langle\psi|\psi\rangle-|\psi\rangle -\frac{2}{\sqrt{2}}|\psi\rangle \langle\psi|110\rangle+\frac{1}{\sqrt{2}}| 110\rangle=
=2|\psi\rangle -|\psi\rangle -\frac{2}{\sqrt{2}}|\psi\rangle \frac{1}{2\sqrt{2}} +\frac{1}{\sqrt{2}}| 110\rangle=
=|\psi\rangle -\frac{2}{4}|\psi\rangle  +\frac{1}{\sqrt{2}}| 110\rangle=
=\frac{1}{2}|\psi\rangle  +\frac{1}{\sqrt{2}}| 110\rangle.
=\frac{1}{2} \cdot \frac{1}{2\sqrt{2}}(|000\rangle+|001\rangle+|011\rangle+|111\rangle+
|100\rangle+|110\rangle+|101\rangle+|010\rangle)+\frac{1}{\sqrt{2}}| 110\rangle.
=\frac{1}{4\sqrt{2}}(|000\rangle+|001\rangle+|011\rangle+|111\rangle+
|100\rangle+5|110\rangle+|101\rangle+|010\rangle).


Tikimybė išmatuoti |110> yra (\frac{5}{4\sqrt{2}})^2=\frac{25}{32}= 0.78125 arba apytiksliai 78 %.

7(\frac{1}{4\sqrt{2}})^2 +\frac{25}{32}=7( \frac{1}{32} )+\frac{25}{32}=1.

Po dar vienos groverio iteracijos G=MB, tikimybė išmatuoti |110> bus ~0.945 arba 94.5 %.

Toliau vėl praleisime visus kubitus pro M vartus:

t=4, M(\frac{1}{2}|\psi\rangle  +\frac{1}{\sqrt{2}}| 110\rangle)=(1-2| 110\rangle \langle 110|)(\frac{1}{2}|\psi\rangle  +\frac{1}{\sqrt{2}}| 110\rangle)=

=\frac{1}{2}|\psi\rangle-\frac{2}{2}| 110\rangle \langle 110|\psi\rangle +\frac{1}{\sqrt{2}}| 110\rangle -\frac{2}{\sqrt{2}}| 110\rangle \langle 110|110\rangle=\frac{1}{2}|\psi\rangle-\frac{1}{2\sqrt{2}}| 110\rangle+\frac{1}{\sqrt{2}}| 110\rangle-\frac{2}{\sqrt{2}}| 110\rangle=

=\frac{1}{2}|\psi\rangle+\frac{-| 110\rangle+2| 110\rangle-4| 110\rangle}{2\sqrt{2}}=\frac{1}{2}|\psi\rangle-\frac{3| 110\rangle}{2\sqrt{2}}.

Toliau praleisime tris pirmus kubitus pro B vartus:

t=5, B(\frac{1}{2}|\psi\rangle-\frac{3| 110\rangle}{2\sqrt{2}})=(2|\psi\rangle \langle\psi|-1)(\frac{1}{2}|\psi\rangle-\frac{3| 110\rangle}{2\sqrt{2}})=
=|\psi\rangle \langle\psi|\psi\rangle-\frac{1}{2}|\psi\rangle-\frac{3}{\sqrt{2}}|\psi\rangle \langle\psi| 110\rangle+\frac{3}{2\sqrt{2}}| 110\rangle=|\psi\rangle-\frac{1}{2}|\psi\rangle-\frac{3}{\sqrt{2}} \cdot\frac{1}{2\sqrt{2}}|\psi\rangle+\frac{3}{2\sqrt{2}}| 110\rangle=
=\frac{4|\psi\rangle-2|\psi\rangle-3|\psi\rangle}{4}+\frac{3}{2\sqrt{2}}| 110\rangle=-\frac{1}{4}|\psi\rangle+\frac{3}{2\sqrt{2}}| 110\rangle.

Tikimybė išmatuoti ieškomą buseną (|110>) yra:

(-\frac{1}{4} \cdot \frac{1}{2\sqrt{2}}+\frac{3}{2\sqrt{2}})^2=(-\frac{1}{8\sqrt{2}} + \frac{3}{2\sqrt{2}})^2 =( \frac{-1+3\cdot 4}{8\sqrt{2}})^2=( \frac{11}{8\sqrt{2}})^2 = 0.9453125 arba ~94.5 %.
7( \frac{-1}{8\sqrt{2}})^2+( \frac{11}{8\sqrt{2}})^2= \frac{7}{64 \cdot 2}+ \frac{121}{128}=\frac{7+121}{128}=1.

Jeigu padarysime dar viena groverio iteracija G=MB, tai tikimybė išmatuoti |110> elementą bus (\frac{13}{16\sqrt{2}})^2\approx 0.330 arba ~33.0 %. Po M vartų visų elementų amplitudės pasidaro neigiamos (-), kas ir parodo, kad jau viršytas iteracijų G limitas.

Kiek Groverio iteracijų reikia?[taisyti | redaguoti kodą]

Groverio algoritmui groverio iteracijų r reikia:

r \rightarrow \frac{\pi \sqrt{2^n}}{4} \approx \sqrt{2^n}
r \rightarrow \frac{\pi \sqrt{2^3}}{4} \approx 2.221441469
r \rightarrow \frac{\pi \sqrt{2^4}}{4}=\pi \approx 3.141592654

Bet iteracijos gali būti tik sveiki skaičiai. Bet kai kubitų labai daug, tai ieškomo elemento gavimo tikimybė yra labai aukšta ir pakanka to, kad iteracijos atliekamos sveikais skaičiais.


Skaičiuojant groverio iteracijas pagal formule:

r \rightarrow \frac{\pi \sqrt{2^n}}{4}

Rodyklė užsisuka už 90 laipsnių reikšmės, bet už tai gaunamas truputi tikslesnis atsakymas (visada?). O jeigu norima, kad rodyklė neužsisuktų už 90 laipsnių stataus kampo, tai tada reikės viena groverio iteracija r mažiau, bet atsakymas bus truputi mažiau tikslus:

r=\arccos\frac{1}{\sqrt{N}}:(2\arccos\sqrt{\frac{N-1}{N}})=\pi : (4\arcsin\frac{1}{\sqrt{N}})-0.5

Laikoma, kad tokiu budu gautas iteracijų skaičius yra tikslus, nors gaunamas mažesnis teisigno atsakymo tikslumas. N=2n, kur n kubitų skaičius.

Teisingo atsakymo gavimo tikimybė[taisyti | redaguoti kodą]

Reikia žinoti kampą:

 \theta = 2\arccos( \sqrt{1-\frac{1}{2^n}} ) =2\arcsin \frac{1}{\sqrt{2^n}},

kur n yra kubitų skaičius. Tada galima surasti ieškomo elemento |t> amplitudę:

 \sin( \frac{2r+1}{2} \theta)|t\rang  ,

kur t yra ieškomas elementas, r yra groverio iteracijų skaičius. O tikimybė išmatuoti ieškomą elementą yra:

p= \sin^2( \frac{2r+1}{2} \theta) .

Visų likusių elementų amplitudė kartu sudėjus yra:

 \cos( \frac{2r+1}{2} \theta)(|\psi\rang-\frac{1}{2^n}|t\rang)  .

O tikimybė išmatuoti klaidingą atsakymą (būseną) yra:

p= \cos^2( \frac{2r+1}{2} \theta) .


Pavyzdžiui, kai n=3:

 \theta = 2\arccos( \sqrt{1-\frac{1}{2^3}} )= 2\arccos \sqrt{0.875}\approx 0.722734247.

Tikimybė išmatuoti ieškomą elementą yra:

p= \sin^2( \frac{2\cdot 2+1}{2} 0.722734247) =\sin^2( 2.5\cdot  0.722734247) \approx 0.972271824^2= 0.9453125.


Pavyzdys, kai n=4:

 \theta = 2\arcsin \frac{1}{\sqrt{2^4}} \approx 0.50536051.

Tikimybė išmatuoti ieškomą elementą yra:

p= \sin^2( \frac{2\cdot 3+1}{2} \cdot 0.50536051) =\sin^2(3.5\cdot 0.50536051) \approx 0.98046875^2\approx 0.961318969.

Groverio Iteracija[taisyti | redaguoti kodą]

Groverio Iteracija: iš pradžių ieškomas elementas pažymimas neigiama amplitude, o paskui jo amplitudė apsukama apie vidurkį.

Norint paprastai ir greitai suskaičiuoti teisingo atsakymo gavimo tikimybę po vienos groverio iteracijos G, galima naudotis šia formule:

p=(\frac{3N-4}{N\sqrt{N}})^2,

Kur N=2^n, o n kubitų skaičius. Pavyzdžiui, kai N=8:

p=(\frac{3\cdot 8-4}{8\sqrt{8}})^2=0.78125.

Kai N=16:

p=(\frac{3\cdot 16-4}{16\sqrt{16}})^2=0.47265625.

Kai N=1024:

p=(\frac{3\cdot 1024-4}{1024\sqrt{1024}})^2\approx 0.008766189.

Apytiksliai sužinoti teisingo atsakymo tikimybę po betkiek Groverio iteracijų galima pagal formulę: p=\frac{r^2}{2^n}, kur n yra kubitų skaičius, o r yra iteracijų skaičius. Bet ši formulė takityna tik kai kubitų ir iteracijų skaičius yra didelis (daugiau nei 100).

Jeigu kubitų yra daugiau negu užduoties, kurią reikia išspresti, kintamųjų arba tiek pat (mn), tada Groverio iteracijų skaičių r galima apytiksliai apskaičiuoti pagal formulę:

r\approx \sqrt{M}=\sqrt{2^{m}}=2^{\frac{m}{2}},

o tikimybę p, pagal formulę:

p\approx{r^2\over 2^m}, \; r^2<2^m,

kur m yra užduoties kintamųjų skaičius, o n yra kubitų skaičius.

Jeigu kubitų n yra mažiau negu kintamųjų m (elementų doumenų bazėje yra 2^m), m>n, tai teisingo atsakymo tikimybė p gaunama pagal formulę:

p={\sqrt{2^n}\over 2^m}=2^{{n\over 2}-m}={r^2\over 2^m},

kur r yra Groverio iteracijų skaičius, r^2<2^n.

Groverio algoritmas su 2 kubitais (N=4)[taisyti | redaguoti kodą]

Atsakymas gaunamas su 100 % tikimybe, nes:

r \rightarrow \frac{\pi \sqrt{2^n}}{4} = \frac{\pi \sqrt{2^2}}{4} = \frac{\pi }{2}\approx 1.570796327
 \theta = 2\arcsin \frac{1}{\sqrt{2^n}} = 2\arcsin \frac{1}{\sqrt{2^2}} \approx 1.047197551

Tikimybė išmatuoti ieškomą elementą yra:

p= \sin^2( \frac{2\cdot r+1}{2} \cdot \theta) =\sin^2( \frac{2\cdot 1+1}{2} \cdot 1.047197551 ) =\sin^2(1.5\cdot 1.047197551) = 1^2= 1.

Pagal šią formulę, iteracijų skaičius yra sveikas skaičius (kaip beje ir teisingo atsakymo tikimybė):

r=\pi : (4\arcsin\frac{1}{\sqrt{2^2}})-0.5=\frac{3.141592654}{4\cdot 0.523598775}-0.5=1.5-0.5=1

Pavyzdžiui, surasime |01>: |00\rang\to {1\over \sqrt{2^2}}(|0\rang+|1\rang)(|0\rang+|1\rang)=|\psi\rang={1\over 2}(|00\rang+|01\rang+|10\rang+|11\rang)\to(1-2| 01\rang \lang 01|)|\psi\rang= =|\psi\rang-{2\over \sqrt{2^2}}| 01\rang =|\psi\rang-|01\rang={1\over 2}(|00\rang-|01\rang+|10\rang+|11\rang)\to(2|\psi\rang \lang\psi|-1)(|\psi\rang-|01\rang)= =2|\psi\rang \lang\psi|\psi\rang-2|\psi\rang \lang\psi|01\rang-|\psi\rang+|01\rang=2|\psi\rang-{2\over \sqrt{2^2}}|\psi\rang-|\psi\rang+|01\rang=|01\rang.

Groverio algoritmas bendru atveju[taisyti | redaguoti kodą]

Turime |0\rang^{\oplus n}|1\rang įėjimą, kurį praleidžiame pro n+1 Hadamardo vartų:

{1\over \sqrt{2^{n+1}}}\sum_{x_1}^{2^n}|x\rang(|0\rang-|1\rang)=|\psi\rang{1\over \sqrt{2}}(|0\rang-|1\rang)=|\psi\rang|-\rang.
Toliau praleidžiame per funkciją |x\rang|y\rang\to |x\rang|y\oplus f(x)\rang :
{1\over \sqrt{2^{n+1}}}\sum_{x_1}^{2^n}|x\rang(|0\oplus f(x)\rang-|1\oplus f(x)\rang)={1\over \sqrt{2^{n+1}}}\sum_{x_1}^{2^n}(-1)^{f(x)}|x\rang(|0\rang-|1\rang),
taigi, jeigu f(x)=1, tai ir yra ieškomas elementas ir jis pažimimas minuso ženklu "-".

Nuorodos[taisyti | redaguoti kodą]